
1. Introduction 

In C++, function overloading and function overriding are two important features of Object-Oriented 
Programming (OOP). 

 Function overloading: Same function name, different parameters, same scope. 
 Function overriding: Same function name, same parameters, different class (base and derived). 

These concepts improve code readability, reusability, and maintainability. 

 

2. Need for Function Overloading & Overriding 

 Avoids writing multiple function names for similar tasks 
 Allows flexible use of functions 
 Supports polymorphism in OOP 
 Improves code organization 
 Reduces errors and redundancy 

 

3. Function Overloading 

Function overloading is the process of declaring multiple functions with the same name in the same 
scope but different parameter lists. 

Key Points: 

 Functions must differ in number of parameters or parameter types 
 Return type alone cannot distinguish functions 
 Compile-time polymorphism (resolved at compile time) 

 

4. Syntax of Function Overloading 

return_type function_name(type1 arg1); 
return_type function_name(type1 arg1, type2 arg2); 
return_type function_name(type arg1, type arg2, type arg3); 

 

5. Examples of Function Overloading 

Example 1: Different number of parameters 
#include <iostream> 
using namespace std; 
 
int add(int a, int b) { 



    return a + b; 
} 
 
int add(int a, int b, int c) { 
    return a + b + c; 
} 
 
int main() { 
    cout << add(5, 10) << endl; 
    cout << add(5, 10, 15) << endl; 
    return 0; 
} 

Output 
15 
30 

 

Example 2: Different types of parameters 
float add(float a, float b) { 
    return a + b; 
} 
 
int add(int a, int b) { 
    return a + b; 
} 

 

6. Rules for Function Overloading 

1. Must have same function name 
2. Must have different parameter lists 
3. Return type cannot be used alone for overloading 
4. Can be overloaded inside the same class or in global scope 

 

7. Advantages of Function Overloading 

 Improves code readability 
 Allows reuse of function names 
 Simplifies programming 
 Supports polymorphism at compile-time 

 

8. Function Overriding 

Function overriding occurs when a derived class provides its own definition of a base class function 
with the same name and parameters. 



Key Points: 

 Requires inheritance 
 Functions must have same name and same parameter list 
 Supports runtime polymorphism 
 Base class function must be virtual to achieve dynamic behavior 

 

9. Syntax of Function Overriding 

class Base { 
   public: 
      virtual void display() { 
          cout << "Base class display" << endl; 
      } 
}; 
 
class Derived : public Base { 
   public: 
      void display() override { // override keyword optional 
          cout << "Derived class display" << endl; 
      } 
}; 

 

10. Example of Function Overriding 

#include <iostream> 
using namespace std; 
 
class Base { 
public: 
    virtual void show() { 
        cout << "Base class show" << endl; 
    } 
}; 
 
class Derived : public Base { 
public: 
    void show() { 
        cout << "Derived class show" << endl; 
    } 
}; 
 
int main() { 
    Base* b; 
    Derived d; 
    b = &d; 
    b->show();  // Calls Derived's show() because of virtual 
    return 0; 
} 

Output 
Derived class show 

 



11. Rules for Function Overriding 

1. Function name must be same 
2. Parameter list must be same 
3. Return type must be compatible (C++11 supports covariant return type) 
4. Access specifier can be different but usually public 
5. Base class function should be virtual for runtime polymorphism 

 

12. Overloading vs Overriding 

Feature Function Overloading Function Overriding 

Scope Same class Base and derived class 

Parameters Must differ Must be same 

Return Type Can differ Must be same or covariant 

Compile/Runtime Compile-time Runtime (if virtual) 

Inheritance required No Yes 

Purpose Convenience, readability Polymorphism, runtime behavior 

 

13. Function Overloading with Constructors 

 Constructors can also be overloaded in C++ 
 Multiple constructors with different parameter lists provide flexible object initialization 

class Student { 
    int roll; 
    float marks; 
public: 
    Student() { roll = 0; marks = 0; } 
    Student(int r) { roll = r; marks = 0; } 
    Student(int r, float m) { roll = r; marks = m; } 
}; 

 

14. Virtual Functions and Overriding 

 Virtual functions allow runtime resolution of overridden functions 
 If base class function is not virtual, base class function is called by default 

class Base { 
    public: 
        void show() { cout << "Base"; } // not virtual 
}; 



 
class Derived : public Base { 
    public: 
        void show() { cout << "Derived"; } 
}; 
 
Base* b = new Derived(); 
b->show(); // Output: Base 

 

15. Advantages of Function Overriding 

 Supports runtime polymorphism 
 Enables dynamic behavior in inheritance 
 Simplifies program design 
 Allows base pointers to work with derived objects 

 

16. Advantages of Function Overloading 

 Reuse function names 
 Improve code readability 
 Reduce complexity 
 Supports compile-time polymorphism 

 

17. Common Mistakes 

 Overloading functions by only return type (invalid) 
 Forgetting virtual keyword for overriding 
 Misusing base class pointers 
 Overriding functions with different parameters 

 

18. Best Practices 

 Use overloading for compile-time flexibility 
 Use overriding for runtime polymorphism 
 Use override keyword in C++11+ for safety 
 Keep function names meaningful 
 Avoid excessive overloading or deep inheritance 

 

19. Applications 



 Overloading: Math operations, printing, constructors 
 Overriding: GUI frameworks, polymorphic behavior, simulation systems 
 Both concepts are essential in OOP design for flexible and maintainable software 

 

20. Conclusion 

Function overloading and function overriding are powerful OOP features in C++. 

 Overloading: Same function name, different parameters, compile-time polymorphism 
 Overriding: Same function name & parameters, base and derived class, runtime polymorphism 

Mastering these concepts helps write flexible, readable, and reusable code in C++. 

 


