1. Introduction

In C++, function overloading and function overriding are two important features of Object-Oriented
Programming (OOP).

o Function overloading: Same function name, different parameters, same scope.
o Function overriding: Same function name, same parameters, different class (base and derived).

These concepts improve code readability, reusability, and maintainability.

2. Need for Function Overloading & Overriding

e Avoids writing multiple function names for similar tasks
o Allows flexible use of functions

e Supports polymorphism in OOP

e Improves code organization

e Reduces errors and redundancy

3. Function Overloading

Function overloading is the process of declaring multiple functions with the same name in the same
scope but different parameter lists.

Key Points:

e Functions must differ in number of parameters or parameter types
e Return type alone cannot distinguish functions
e Compile-time polymorphism (resolved at compile time)

4. Syntax of Function Overloading

return_type function_name(typel argl);

return_type function_name(typel argl, type2 arg2);
return_type function_name(type argl, type arg2, type arg3);

5. Examples of Function Overloading

Example 1: Different number of parameters

#include <iostream>
using namespace std;

int add(int a, int b) {

return a + b;

}

intadd(int a, int b, int c) {
returna+b +¢;

}

int main() {
cout << add(5, 10) << endl;
cout << add(5, 10, 15) << end];
return 0;

Output

15
30

Example 2: Different types of parameters

float add(float a, float b) {
return a + b;

}

int add(int a, int b) {
return a + b;

6. Rules for Function Overloading

Must have same function name

Must have different parameter lists

Return type cannot be used alone for overloading

Can be overloaded inside the same class or in global scope

BN =

7. Advantages of Function Overloading

e Improves code readability

o Allows reuse of function names

o Simplifies programming

e Supports polymorphism at compile-time

8. Function Overriding

Function overriding occurs when a derived class provides its own definition of a base class function
with the same name and parameters.

Key Points:

e Requires inheritance

e Functions must have same name and same parameter list

e Supports runtime polymorphism

e Base class function must be virtual to achieve dynamic behavior

9. Syntax of Function Overriding

class Base {
public:
virtual void display() {
cout << "Base class display" << end];

}

I3

class Derived : public Base {
public:
void display() override { // override keyword optional
cout << "Derived class display" << end];

10. Example of Function Overriding

#include <iostream>
using namespace std;

class Base {
public:
virtual void show() {
cout << "Base class show" << endl;

b

class Derived : public Base {
public:
void show() {
cout << "Derived class show" << end];

b

int main() {
Base* b;
Derived d;
b = &d;
b->show(); // Calls Derived's show() because of virtual
return 0;

Output
Derived class show

11. Rules for Function Overriding

Function name must be same

Parameter list must be same

Return type must be compatible (C++11 supports covariant return type)
Access specifier can be different but usually public

Base class function should be virtual for runtime polymorphism

SNl M

12. Overloading vs Overriding

Feature Function Overloading Function Overriding
Scope Same class Base and derived class
Parameters Must differ Must be same
Return Type Can differ Must be same or covariant
Compile/Runtime Compile-time Runtime (if virtual)
Inheritance required No Yes
Purpose Convenience, readability Polymorphism, runtime behavior

13. Function Overloading with Constructors

e Constructors can also be overloaded in C++
e Multiple constructors with different parameter lists provide flexible object initialization

class Student {
int roll;
float marks;
public:

Student() { roll = 0; marks = 0; }
Student(int r) { roll = r; marks = 0; }
Student(int r, float m) { roll = r; marks = m; }

)

14. Virtual Functions and Overriding

e Virtual functions allow runtime resolution of overridden functions
e Ifbase class function is not virtual, base class function is called by default

class Base {
public:

void show() { cout << "Base"; } // not virtual

};

class Derived : public Base {
public:
void show() { cout << "Derived"; }

b

Base* b = new Derived();
b->show(); // Output: Base

15. Advantages of Function Overriding

Supports runtime polymorphism

Enables dynamic behavior in inheritance
Simplifies program design

Allows base pointers to work with derived objects

16. Advantages of Function Overloading

Reuse function names

Improve code readability

Reduce complexity

Supports compile-time polymorphism

17. Common Mistakes

Overloading functions by only return type (invalid)
Forgetting virtual keyword for overriding
Misusing base class pointers

Overriding functions with different parameters

18. Best Practices

Use overloading for compile-time flexibility
Use overriding for runtime polymorphism

Use override keyword in C++11+ for safety

Keep function names meaningful

Avoid excessive overloading or deep inheritance

19. Applications

e Overloading: Math operations, printing, constructors
e Overriding: GUI frameworks, polymorphic behavior, simulation systems
o Both concepts are essential in OOP design for flexible and maintainable software

20. Conclusion

Function overloading and function overriding are powerful OOP features in C++.

e Overloading: Same function name, different parameters, compile-time polymorphism
e Overriding: Same function name & parameters, base and derived class, runtime polymorphism

Mastering these concepts helps write flexible, readable, and reusable code in C++.

